BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus

نویسندگان

  • Zhengfu Zhou
  • Xiaoling Dun
  • Shengqian Xia
  • Dianyi Shi
  • Maomao Qin
  • Bin Yi
  • Jing Wen
  • Jinxiong Shen
  • Chaozhi Ma
  • Jinxing Tu
  • Tingdong Fu
چکیده

7365AB, a recessive genetic male sterility system, is controlled by BnMs3 in Brassica napus, which encodes a Tic40 protein required for tapetum development. However, the role of BnMs3 in rapeseed anther development is still largely unclear. In this research, cytological analysis revealed that anther development of a Bnms3 mutant has defects in the transition of the tapetum to the secretory type, callose degradation, and pollen-wall formation. A total of 76 down-regulated unigenes in the Bnms3 mutant, several of which are associated with tapetum development, callose degeneration, and pollen development, were isolated by suppression subtractive hybridization combined with a macroarray analysis. Reverse genetics was applied by means of Arabidopsis insertional mutant lines to characterize the function of these unigenes and revealed that MSR02 is only required for transport of sporopollenin precursors through the plasma membrane of the tapetum. The real-time PCR data have further verified that BnMs3 plays a primary role in tapetal differentiation by affecting the expression of a few key transcription factors, participates in tapetal degradation by modulating the expression of cysteine protease genes, and influences microspore separation by manipulating the expression of BnA6 and BnMSR66 related to callose degradation and of BnQRT1 and BnQRT3 required for the primary cell-wall degradation of the pollen mother cell. Moreover, BnMs3 takes part in pollen-wall formation by affecting the expression of a series of genes involved in biosynthesis and transport of sporopollenin precursors. All of the above results suggest that BnMs3 participates in tapetum development, microspore release, and pollen-wall formation in B. napus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microspore separation in the quartet 3 mutants of Arabidopsis is impaired by a defect in a developmentally regulated polygalacturonase required for pollen mother cell wall degradation.

Mutations in the QUARTET loci in Arabidopsis result in failure of microspore separation during pollen development due to a defect in degradation of the pollen mother cell wall during late stages of pollen development. Mutations in a new locus required for microspore separation, QRT3, were isolated, and the corresponding gene was cloned by T-DNA tagging. QRT3 encodes a protein that is approximat...

متن کامل

Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis.

The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development. However, the molecular mechanism regulating the degeneration process is unknown. To gain insight into this molecular mechanism, we first determined that the most critical period for tapetal secretion to support pollen development is from the vacuola...

متن کامل

Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant.

The Arabidopsis male sterility1 mutation results in mature anthers that are devoid of pollen. Meiosis and early development progress normally; however, after microspore release, the microspore cytoplasm and tapetum become abnormally granular and vacuolated, and degeneration occurs. Pollen wall development is seriously affected; primexine formation within the callose wall appears to occur normal...

متن کامل

Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose

The induction of microspore embryogenesis produces dramatic changes in different aspects of the cell physiology and structure. Changes at the cell wall level are among the most intriguing and poorly understood. In this work, we used high pressure freezing and freeze substitution, immunolocalization, confocal, and electron microscopy to analyze the structure and composition of the first cell wal...

متن کامل

Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis

Brassica napus cultivar Westar is non-embryogenic under all standard protocols for induction of microspore embryogenesis; however, the rare embryos produced in Westar microspore cultures, induced with added brassinosteroids, were found to develop into heritably stable embryogenic lines after chromosome doubling. One of the Westar-derived doubled haploid (DH) lines, DH-2, produced up to 30% the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2012